B.Sc. Semester III (Honours) Examination, 2018-19
 PHYSICS

Course ID : 32412

Course Code : SHPHS-302C-6(T)

Course Title : Thermal Physics

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any five questions:
$1 \times 5=5$
(a) What do you mean by thermodynamic equilibrium?
(b) State the law of correspondence states.
(c) What is Boyle temperature?
(d) Calculate the work done by 1 mole of gas during a quasi-static isothermal expansion from a volume V_{i} to a volume V_{f}, when the equation of state is $P(V-b)=R T$.
(e) State law of equipartition of energy.
(f) What is Gibbs potential?
(g) State the second law of thermodynamics in terms of entropy.
(h) What is temperature of inversion?

Section-II

Answer any two questions:
2. (a) What are critical constants of a gas?
(b) Obtain their values in terms of the constant of Van der Waals equation. $1+4=5$
3. Derive the expression of co-efficient of viscosity using transport phenomenon.
4. Derive Clapeyron's equation $\frac{d P}{d T}=\frac{L}{T\left(V_{2}-V_{1}\right)}$, where the symbols have their usual meaning. What are the characteristics of a λ transition?
$4+1=5$
5. (a) Define entropy.
(b) Show that the change in entropy is independent of path.
(c) State briefly the physical significance of entropy.

Section-III

Answer any one question:
6. (a) Define Joule-Thomson effect.
(b) Show that the $J-T$ co-efficient $\mu=\left(\frac{\partial T}{\partial P}\right)_{H}$ can be written as $\mu=\frac{1}{C p}\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right]$. Symbols are of usual meanings.
(c) Show that $J-T$ effect is zero for ideal gas.
(d) Write down the Maxwell's four thermodynamic relation.
(e) Prove $T d s=C_{P} d T-T\left(\frac{\partial V}{\partial T}\right)_{P} d P$.
$1+3+2+2+2=10$
7. (a) Deduce the expressions for the work in isothermal and adiabatic expansion of a perfect gas in terms of temperature.
(b) Explain what is meant by a reversible thermodynamic process.
(c) Prove that the efficiency of a carnot engine is $\eta=1-\frac{T_{2}}{T_{1}}$, where T_{1} and T_{2} are the temperature of source and sink respectively.

