Course Code : SHPHS-302C-6(T)

SH-III/Physics-302C-6(T)/19

B.Sc. Semester III (Honours) Examination, 2018-19 PHYSICS

Course ID : 32412

Course Title : Thermal Physics

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer *any five* questions:

- (a) What do you mean by thermodynamic equilibrium?
- (b) State the law of correspondence states.
- (c) What is Boyle temperature?
- (d) Calculate the work done by 1 mole of gas during a quasi-static isothermal expansion from a volume V_i to a volume V_f , when the equation of state is P(V-b) = RT.
- (e) State law of equipartition of energy.
- (f) What is Gibbs potential?
- (g) State the second law of thermodynamics in terms of entropy.
- (h) What is temperature of inversion?

Section-II

Answer *any two* questions:

- **2.** (a) What are critical constants of a gas?
 - (b) Obtain their values in terms of the constant of Van der Waals equation. 1+4=5
- 3. Derive the expression of co-efficient of viscosity using transport phenomenon. 5
- 4. Derive Clapeyron's equation $\frac{dP}{dT} = \frac{L}{T(V_2 V_1)}$, where the symbols have their usual meaning. What are the characteristics of a λ transition? 4+1=5
- **5.** (a) Define entropy.

10451

- (b) Show that the change in entropy is independent of path.
- (c) State briefly the physical significance of entropy. 1+2+2=5

Full Marks: 25

 $5 \times 2 = 10$

 $1 \times 5 = 5$

Section-III

Answer *any one* question:

 $10 \times 1 = 10$

- **6.** (a) Define Joule-Thomson effect.
 - (b) Show that the *J*-*T* co-efficient $\mu = \left(\frac{\partial T}{\partial P}\right)_H$ can be written as $\mu = \frac{1}{cp} \left[T\left(\frac{\partial V}{\partial T}\right)_P V\right]$. Symbols are of usual meanings.
 - (c) Show that *J*-*T* effect is zero for ideal gas.
 - (d) Write down the Maxwell's four thermodynamic relation.
 - (e) Prove $Tds = C_P dT T \left(\frac{\partial V}{\partial T}\right)_P dP.$ 1+3+2+2+2=10
- 7. (a) Deduce the expressions for the work in isothermal and adiabatic expansion of a perfect gas in terms of temperature.
 - (b) Explain what is meant by a reversible thermodynamic process.
 - (c) Prove that the efficiency of a carnot engine is $\eta = 1 \frac{T_2}{T_1}$, where T_1 and T_2 are the temperature of source and sink respectively. 3+2+5=10